А какие они, звёзды?

Просмотреть

Всем известны три агрегатных состояния вещества - твёрдое, жидкое и газообразное. Что произойдёт с веществом при последовательном нагревании до высоких температур в замкнутом объёме? - Последовательный переход из одного агрегатного состояния в другое: твёрдое тело - жидкость - газ (вследствие увеличения скорости движения молекул при росте температуры). При дальнейшем нагревании газа при температурах свыше 1 200 ºС начинается распад молекул газа на атомы, а при температурах выше 10 000 ºС - частичный или полный распад атомов газа на составляющие их элементарные частицы - электроны и ядра атомов. Плазма - четвёртое состояние вещества, при котором молекулы или атомы вещества частично или полностью разрушены под действием высоких температур или по другим причинам. 99,9% вещества Вселенной находится в состоянии плазмы.

арповнн

Звёзды - это класс космических тел, обладающих массой 1026-1029 кг. Звезда - это раскалённое плазменное шарообразное космическое тело, находящееся, как правило, в гидродинамическом и термодинамическом равновесии.

Если равновесие нарушается, звезда начинает пульсировать (изменяются её размеры, светимость и температура). Звезда становится переменной звездой.

Переменная звезда - это звезда, у которой со временем изменяется блеск (видимая яркость на небе). Причинами переменности могут быть физические процессы в недрах звезды. Такие звёзды называют физическими переменными (например, δ Цефея. Похожие на неё переменные звёзды стали называть цефеидами).

ыавв222

Встречаются и затменно-переменные звёзды, причиной переменности которых являются взаимные затмения их компонентов (например, β Персея - Алголь. Её переменность впервые обнаружил в 1669 г. итальянский экономист и астроном Джеминиано Монтанари).

арарпо557

Затменно-переменные звёзды всегда являются двойными, т.е. состоят из двух близко расположенных звёзд. Переменные звёзды на звёздных картах обозначаются обведённым кружком: 

враов

Не всегда звёзды - шары. Если звезда очень быстро вращается, то её форма не шарообразная. Звезда сжимается с полюсов и становится похожей на мандарин или тыкву (например, Вега, Регул). Если звезда является двойной, то взаимное притяжение этих звёзд друг к другу также влияет на их форму. Они становятся яйцевидными или дынеобразными (например, компоненты двойной звезды β Лиры или Спики):

врвпыоыр56475

Звёзды - основные жители нашей Галактики (наша Галактика пишется с большой буквы). В ней насчитывается около 200 миллиардов звёзд. С помощью даже самых больших телескопов удаётся рассмотреть лишь полпроцента от общего количества звёзд Галактики. В звёздах сосредоточено более 95 % всего вещества, наблюдаемого в природе. Остальные 5 %  составляют межзвёздный газ, пыль и все несамосветящие тела.

Кроме Солнца, все звёзды находятся от нас так далеко, что даже в самые крупные телескопы они наблюдаются в виде светящихся точек разного цвета и блеска. Ближайшей к Солнцу является система α Центавра, состоящая из трёх звёзд. Одна из них - красный карлик под названием Проксима - является самой близкой звездой. До неё 4,2 светового года. До Сириуса - 8,6 св. лет, до Альтаира - 17 св. лет. До Веги - 26 св. лет. До Полярной звезды - 830 св. лет. До Денеба - 1 500 св. лет. Впервые расстояние до другой звезды (это была Вега) в 1837 году смог определить В.Я. Струве. 

Первая звезда, у которой удалось получить изображение диска (и даже каких-то пятен на нём) - Бетельгейзе (α Ориона). Но это потому, что по диаметру Бетельгейзе превосходит Солнце в 500-800 раз (звезда пульсирует). Также было получено изображение диска Альтаира (α Орла), но это потому, что Альтаир - одна из ближайших звёзд.

Цвет звёзд зависит от температуры их внешних слоёв. Диапазон температур - от 2 000 до 60 000 °С. Самые холодные звёзды - красные, а самые горячие - голубые. По цвету звезды можно судить, насколько сильно раскалены её внешние слои.

ыыпп463

Примеры красных звёзд: Антарес (α Скорпиона) и Бетельгейзе (α Ориона).

Примеры оранжевых звёзд: Альдебаран (α Тельца), Арктур (α Волопаса) и Поллукс (β Близнецов).

Примеры жёлтых звёзд: Солнце, Капелла (α Возничего) и Толиман (α Центавра).

Примеры желтовато-белых звёзд: Процион (α Малого Пса) и Канопус (α Киля).

Примеры белых звёзд: Сириус (α Большого Пса), Вега (α Лиры), Альтаир (α Орла) и Денеб (α Лебедя).

Примеры голубоватых звёзд: Регул (α Льва) и Спика (α Девы).

Из-за того, что от звёзд приходит очень мало света, человеческий глаз способен различать цветовые оттенки только у самых ярких из них. В бинокль и тем более в телескоп (они улавливают больше света, чем глаз) цвет звёзд становится заметнее.

С глубиной температура нарастает. Даже у самых холодных звёзд в центре температура достигает миллионов градусов. У Солнца в центре около 15 000 000 °С (используют также шкалу Кельвина - шкалу абсолютных температур, но когда речь идёт об очень высоких температурах, разницей в 273 º между шкалами Кельвина и Цельсия можно пренебречь). 

Что же так сильно разогревает звёздные недра? Оказывается, там происходят термоядерные процессы, в результате которых выделяется огромное количество энергии. В переводе с греческого "термос" означает тёплый. Основной химический элемент, из которого состоят звёзды - водород. Именно он и является топливом для термоядерных процессов. В этих процессах происходит превращение ядер атомов водорода в ядра атомов гелия, что сопровождается выделением энергии. Количество ядер водорода в звезде при этом уменьшается, а количество ядер гелия - увеличивается. Со временем в звезде синтезируются и другие химические элементы. Все химические элементы, из которых состоят молекулы различных веществ, родились когда-то в недрах звёзд. "Звёзды - это прошлое человека, а человек - это будущее звезды", - так иногда образно говорят.

Процесс испускания звездой энергии в виде электромагнитных волн и частиц называется излучением. Звёзды излучают энергию не только в виде света и тепла, но и других видов излучений - гамма-лучей, рентгеновского, ультрафиолетового, радиоизлучения. Кроме того, звёзды испускают потоки нейтральных и заряженных частиц. Эти потоки образуют звёздный ветер. Звёздный ветер - это процесс истечения вещества из звёзд в космическое пространство. В результате масса звёзд постоянно и постепенно уменьшается. Именно звёздный ветер от Солнца (солнечный ветер) приводит к появлению полярных сияний на Земле и других планетах. Именно солнечный ветер отклоняет хвосты комет в противоположную от Солнца сторону.

Звёзды появляются, естественно, не из пустоты (пространство между звёздами - это не абсолютный вакуум). Материалом служат газ и пыль. Они распределены в космосе неравномерно, образуя бесформенные облака очень маленькой плотности и громадной протяженности - от одного-двух до десятков световых лет. Такие облака называются диффузными газо-пылевыми туманностями. Температура в них очень низка - около -250 °С. Но не в каждой газо-пылевой туманности образуются звёзды. Некоторые туманности могут долгое время существовать без звёзд. Какие же условия необходимы для начала процесса зарождения звёзд? Первое, это масса облака. Если материи недостаточно, то, конечно, звезда не появится. Второе, компактность. В слишком протяжённом и рыхлом облаке не могут начаться процессы его сжатия. Ну, и в-третьих, нужна затравка - т.е. сгусток пыли и газа, который станет потом зародышем звезды - протозвездой. Протозвезда - это звезда на завершающем этапе своего формирования. Если эти условия соблюдаются, то начинается гравитационное сжатие и разогрев облака. Этот процесс заканчивается звездообразованием - появлением новых звёзд. Занимает этот процесс миллионы лет. Астрономами были найдены туманности, в которых процесс звездообразования в самом разгаре - некоторые звёзды уже зажглись, некоторые находятся в виде зародышей - протозвёзд, и туманность ещё сохранилась. Примером служит Большая Туманность Ориона.

ввпп113

Основными физическими характеристиками звезды являются светимость, масса и радиус (или диаметр), которые определяются из наблюдений. Зная их, а также химический состав звезды (что определяется по её спектру), можно рассчитать модель звезды, т.е. физические условия в её недрах, исследовать процессы, которые в ней происходят. Остановимся подробнее на основных характеристиках звёзд.

Масса. Непосредственно оценить массу можно только по гравитационному воздействию звезды на окружающие тела. Массу Солнца, например, определили по известным периодам обращения вокруг него планет. У других звёзд планеты непосредтвенно не наблюдаются. Достоверное измерение массы возможно лишь у двойных звёзд (при этом используется обобщённый Ньютоном III закон Кеплера, но и тогда погрешность составляет 20-60 %). Примерно половина всех звёзд в нашей Галактике - двойные. Массы звёзд колеблются от ≈0,08 до ≈100 масс Солнца. Звёзд с массой меньше 0,08 массы Солнца не бывает, они просто не становятся звёздами, а остаются тёмными телами. Звёзды массой более 100 масс Солнца встречаются крайне редко. Большая часть звёзд имеет массы менее 5 масс Солнца. От массы зависит судьба звезды, т.е. тот сценарий, по которому звезда развивается, эволюционирует. Маленькие холодные красные карлики весьма экономно расходуют водород и поэтому их жизнь продолжается сотни миллиардов лет. Продолжительность жизни Солнца - жёлтого карлика - около 10 миллиардов лет (Солнце уже прожило около половины своей жизни). Массивные сверхгиганты расходуют водород быстро и угасают уже через несколько миллионов лет после своего рождения. Чем массивнее звезда, тем короче её жизненный путь.

Возраст Вселенной оценивается в 13,7 миллиардов лет. Поэтому звёзд возрастом более 13,7 миллиардов лет пока не существует.

  • Звёзды с массой 0,08 массы Солнца - это коричневые карлики; их судьба - постоянное сжатие и остывание с прекращением всех термоядерных реакций и превращением в тёмные планетоподобные тела.
  • Звёзды с массой 0,08-0,5 массы Солнца (это всегда красные карлики) после израсходования водорода начинают медленно сжиматься, при этом нагреваясь и становясь белым карликом.
  • Звёзды с массой 0,5-8 масс Солнца в конце жизни превращаются сначала в красных гигантов, а затем в белых карликов. Внешние слои звезды при этом рассеиваются в космическом пространстве в виде планетарной туманности. Планетарная туманность часто имеет форму сферы или кольца.
  • Звёзды с массой 8-10 масс Солнца могут в конце жизни взрываться, а могут стареть спокойно, сначала превращаясь в красных сверхгигантов, а затем в красных карликов.
  • Звёзды с массой более 10 масс Солнца в конце жизненного пути сначала становятся красными сверхгигантами, потом взрываются как сверхновые (сверхновая звезда - это не новая, а старая звезда) и затем превращаются в нейтронные звёзды или становятся чёрными дырами.

Чёрные дыры - это не отверстия в космическом пространстве, а объекты (остатки массивных звёзд) с очень большой массой и плотностью. Чёрные дыры не обладают ни сверхъестественными, ни магическими силами, не являются "монстрами Вселенной". Просто они обладают таким сильным гравитационным полем, что никакое излучение (ни видимое - свет, ни невидимое) не может их покинуть. Поэтому чёрные дыры и не видимы. Однако, их можно обнаружить по их воздействию на окружающие звёзды, туманности. Чёрные дыры - совершенно обычное явление во Вселенной и пугаться их не стоит. В центре нашей Галактики, возможно, имеется сверхмассивная чёрная дыра.

Радиус (или диаметр). Размеры звёзд варьируют в широких пределах - от нескольких километров (нейтронные звёзды) до 2 000 диаметров Солнца (сверхгиганты). Как правило, чем меньше звезда, тем выше её средняя плотность. У нейтронных звёзд плотность достигает 1013 г/см3! Напёрсток такого вещества весил бы на Земле 10 миллионов тонн. Зато у сверхгигантов плотность меньше плотности воздуха у поверхности Земли.

Диаметры некоторых звёзд в сравнении с Солнцем:

Сириус и Альтаир в 1,7 раза больше,

Вега в 2,5 раза больше,

Регул в 3,5 раза больше,

Арктур в 26 раз больше,

Полярная в 30 раз больше,

Ригель в 70 раз больше,

Денеб в 200 раз больше,

Антарес в 800 раз больше,

YV Большого Пса в 2 000 раз больше (самая крупная звезда из известных).


Светимость - это полная энергия, излучаемая объектом (в данном случае звёздами) в единицу времени. Светимость звёзд обычно сравнивают со светимостью Солнца (светимость звёзд выражают через светимость Солнца). Сириус, например, в 22 раза излучает больше энергии, чем Солнце (светимость Сириуса равна 22 Солнцам). Светимость Веги - 50 Солнц, а светимость Денеба - 54 000 Солнц (Денеб - это одна из самых мощных звёзд).

Видимая яркость (правильнее, блеск) звезды на земном небе зависит от:

- расстояния до звезды. Если звезда будет приближаться к нам, то её видимая яркость будет постепенно увеличиваться. И наоборот, при удалении звезды от нас её видимая яркость мало-помалу будет уменьшаться. Если взять две одинаковые звезды, то более близкая к нам будет казаться и более яркой.

- от температуры внешних слоёв. Чем сильнее раскалена звезда, тем больше световой энергии она посылает в пространство, и тем ярче она будет казаться. Если звезда остывает, то и видимая её яркость на небе будет уменьшаться. Две звезды одинаковых размеров и на одинаковых расстояниях от нас будут казаться одинаковыми по видимой яркости при условии, что они излучают одинаковое количество световой энергии, т.е. имеют одинаковую температуру внешних слоёв. Если же одна из звёзд холоднее другой, то и казаться она будет менее яркой. 

- от размеров (диаметра). Если взять две звезды с одинаковой температурой внешних слоёв (одного цвета) и расположить их на одинаковом расстоянии от нас, то более крупная звезда будет излучать больше световой энергии, а значит, будет казаться на небе более яркой.

- от поглощения света нахоящимися на пути луча зрения облаками космической пыли и газа. Чем толще слой космической пыли, тем больше света от звезды он поглощает, и тем тусклее кажется звезда. Если мы возьмём две одинаковые звезды и поместим перед одной из них газо-пылевую туманность, то как раз эта звезда и будет казаться менее яркой. 

- от высоты звезды над горизонтом. Возле горизонта всегда плотная дымка, которая поглощает часть света от звёзд. Возле горизонта (вскоре после восхода или незадолго перед заходом) звёзды всегда выглядят более тусклыми, чем когда они над головой.

Очень важно не путать понятия "казаться" и "быть". Звезда может быть очень яркой сама по себе, но казаться тусклой из-за различных причин: из-за большого расстояния до неё, из-за маленьких размеров, из-за поглощения её света космической пылью или пылью в атмосфере Земли. Поэтому, когда говорят о яркости звезды на земном небе, употребляют словосочетание "видимая яркость" или "блеск".

аарр487

Как уже говорилось, существуют двойные звёзды. Но бывают и тройные (например, α Центавра), и четверные (например, ε Лиры), и пятерные, и шестерные (например, Кастор) и т.д. Отдельные звёзды в звёздной системе называют компонентами. Звёзды с числом компонентов более двух называют кратными звёздами. Все компоненты кратной звезды связаны силами взаимного тяготения (образуют систему звёзд) и движутся по сложным траекториям.

Если компонентов много, то это уже не кратная звезда, а звёздное скопление. Различают шаровые и рассеянные звёздные скопления. Шаровые скопления содержат много старых звёзд и являются более пожилыми, нежели скопления рассеянные, содержащие много молодых звёзд. Шаровые скопления довольно устойчивы, т.к. звёзды в них находятся на небольших расстояниях друг от друга и силы взаимного притяжения между ними намного больше, чем между звёздами рассеянных скоплений. Рассеянные скопления со временем ещё больше рассеиваются.

Рассеянные скопления, как правильно, располагаются на полосе Млечного Пути или поблизости. Наоборот, шаровые скопления располагаются на звёздном небе в стороне от Млечного Пути.

Некоторые звёздные скопления можно увидеть на небе даже невооружённым глазом. Например, рассеянные скопления Гиады и Плеяды (М 45) в Тельце, рассеянное скопление Ясли (М 44) в Раке, шаровое скопление М 13 в Геркулесе. Довольно много их видно в бинокль.

Последнее изменение: Среда, 12 декабря 2012, 22:22