3. ЭЛЕКТРОСТАТИКА. ПОСТОЯННЫЙ ТОК

3.1. Электрическое поле в вакууме

Электростатика – раздел, изучающий статические (неподвижные) заряды и связанные с ними электрические поля.

Электростатическое поле – одна из составляющих электромагнитного поля, возникающая вокруг тел или частиц, обладающих электрическим зарядом. Создается неподвижными в пространстве и неизменными во времени электрическими зарядами (при отсутствии электрических токов) и может наблюдаться благодаря силовому воздействию на заряженные тела.

3.1.1. Точечный заряд (q) – это заряженное тело, размеры которого пренебрежимо малы по сравнению с расстоянием до других заряженных тел, с которым оно взаимодействует.

3.1.2. Элементарный электрический заряд – это наименьший по абсолютной величине заряд, которым обладают некоторые элементарные частицы, наблюдаемые в свободном состоянии.

3.1.3. Закон кратности элементарного заряда:

а) существует наименьший неделимый заряд $|e| = 1.6 \cdot 10^{-19}$ Кл;

б) любой заряд кратен элементарному заряду $q = \pm n \cdot e$,

где *п* – целое число.

3.1.4. Закон сохранения заряда. При любых явлениях в замкнутой системе суммарный электрический заряд не меняется, т.е. не возникает из нечего и не исчезает в никуда. Возможно лишь перетекание (перераспределение) заряда между телами. Суммарный электрический заряд замкнутой системы не изменяется: $q = \sum q_i = \text{const.}$

3.1.5. Закон Кулона: сила взаимодействия точечных зарядов в вакууме пропорциональна величине зарядов и обратно пропорциональна квадрату расстояния между ними (рис.3.1):

$$F = \frac{1}{4\pi\varepsilon_0\varepsilon} \frac{|q_1q_2|}{r^2}$$
или $\vec{F} = \frac{1}{4\pi\varepsilon_0\varepsilon} \frac{q_1q_2}{r^2} \frac{\vec{r}}{r},$

где $\varepsilon_0 = 8,85 \cdot 10^{-12} \, \Phi/M$ – электрическая постоянная; *r* – радиус-вектор, определяющий точку поля; *q* – заряд, создающий поле, ε – диэлектрическая проницаемость вещества.

Одноименные заряды отталкиваются, разноименные – притягиваются.

3.1.7. Диэлектрическая проницаемость вещества показывает во сколько раз сила взаимодействия между зарядами в вакууме больше, чем в среде. $\varepsilon = \frac{F_{\text{вак}}}{F_{\text{ср}}}$.

3.1.8. Напряженность электростатического поля – физическая величина, численно равная силе, действующей на точечный единичный положительный заряд q_0 , помещенный в данную точку поля:

$$E = \frac{F}{q_0} = \frac{q}{4\pi\varepsilon_0 r^2}$$
или $\vec{E} = \frac{q}{4\pi\varepsilon_0 r^2} \vec{r},$

где r – расстояние от заряда до точки, где мы изучаем это поле, $q_0 = +1$ Кл.

3.1.9. Принцип суперпозиции: напряженность результирующего поля, системы точечных зарядов равна векторной сумме напряженностей полей, созданных в данной точке каждым из них в отдельности (рис. 3.2):

$$\vec{\mathbf{E}} = \sum_{i=1}^{N} \vec{\mathbf{E}}_i.$$

3.1.10. Результирующая напряженность поля двух зарядов *q*₁ и *q*₂:

$$E = \sqrt{E_1^2 + E_2^2 + 2E_1E_2\cos\alpha} = \frac{1}{4\pi\varepsilon_0} \sqrt{\frac{q_1^2}{r_1^4} + \frac{q_2^2}{r_2^4} + \frac{2q_1q_2}{r_1^2r_2^2}\cos\alpha},$$

где $\cos\alpha = \frac{r_1^2 - r_2^2 - r^2}{2r_1r_2}$ (рис.3.2).

Puc.3.2

3.1.10. Линейная плотность заряда – предел отношения электрического заряда, находящегося в элементе линии, к длине этого элемента линии, который содержит данный заряд, когда длина этого элемента стремится к нулю:

$$\lambda = \frac{\mathrm{d}q}{\mathrm{d}l}$$
.

3.1.11. Поверхностная плотность заряда – предел, к которому стремится отношение электрического заряда к площади, на которой этот заряд расположен, при условии, что площадь стремится к нулю:

$$\sigma = \mathrm{d}q/\mathrm{d}S$$

3.1.12. Объемная плотность заряда – предел, к которому стремится отношение электрического заряда к объему, в котором этот заряд расположен, при условии, что объем стремится к нулю:

$$\rho = \mathrm{d}q/\mathrm{d}V$$

3.1.13. Электрический диполь – система двух одинаковых по величине, но разноименных точечных зарядов (рис.3.3), расстояние между которыми l значительно меньше расстояния до тех точек, в которых определяется поле системы (r >> l).

3.1.14. Электрический момент диполя (дипольный момент) – произведение положительного заряда диполя на плечо:

$$\vec{\mathbf{p}} = q\mathbf{1}$$
,

где Î – *плечо диполя* – вектор, направленный от отрицательного заряда к положительному и численно равный расстоянию между зарядами.

3.1.15. Напряженность электрического поля диполя (рис.3.3, 3.4).

• Напряженность в точке *A* на прямой, проходящей через центр диполя и перпендикулярной к оси (рис.3.3):

$$E_{\perp} = rac{ql}{4\pi arepsilon_0 r^3},$$
или $E_{\perp} = rac{p}{4\pi arepsilon_0 r^3}.$

• На оси диполя, в точке *B*:

$$ec{\mathbf{E}}_{\parallel}=rac{2ql}{4\pi arepsilon_0 r^3},$$
или $ec{\mathbf{E}}_{\parallel}=rac{2ec{\mathbf{p}}}{4\pi arepsilon_0 r^3}.$

• В произвольной точке *C* (рис. 3.4):

$$E = \frac{p}{4\pi\varepsilon_0 r^3} \sqrt{3\cos^2 \varphi + 1} \,.$$

3.2 Теорема Остроградского – Гаусса и её применение

3.2.1. Силовыми линиями – это линии, касательная к которым в любой точке поля совпадает с направлением вектора напряженности \vec{E} (рис. 3.5).

3.2.2. Потоком вектора напряженности Φ_E называется полное число силовых линий, проходящих через поверхность *S* (рис. 3.6):

$$\Phi_E = ES_{\perp} = ES\cos\alpha = E_nS$$
.

Определяется как скалярное произведение двух векторов $\Phi_E = (\vec{E}, \vec{S})$, где вектор $\vec{S} = \vec{n}S$. Таким образом, поток вектора \vec{E} есть скаляр, который в зависимости от величины угла α может быть как положительным, так и отрицательным.

3.2.3. Теорема Гаусса для электростатического поля – поток вектора напряженности электрического поля через любую произвольно выбранную замкнутую поверхность пропорционален заключённому внутри этой поверхности электрическому заряду:

• для одного заряда: $\Phi_E = \oint_S E_n dS = \frac{q}{\epsilon \epsilon_0};$

- для нескольких зарядов: $\Phi_E = \oint_S E_n dS = \frac{1}{\epsilon \epsilon_0} \sum_{i=1}^n q_i = \frac{1}{\epsilon \epsilon_0} \int_V \rho dV;$
- в дифференциальной форме: div $\vec{E} = \frac{\rho}{\epsilon \epsilon_0}$ или $\vec{\nabla} \vec{E} = \frac{\rho}{\epsilon \epsilon_0}$,

где S – площадь; E_n – произведение вектора \vec{E} на нормаль \vec{n} к данной площади.

3.2.4.	Зависимости напряженности электростатического поля
от расстоя	ния для разных моделей:

Модели распределе- ния заряда	Формулы для расчета напряженности	Графики зависимости напряженности от ко- ординаты
Точечный заряд	$E = \frac{q}{4\pi\varepsilon_0 r^2}$	$ \begin{array}{c} E \\ 0 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
Бесконечная равномерно заряжен- ная плоскость с по- верхностной плотно- стью заряда о	$E = \frac{\sigma}{2\varepsilon_0}$	E
Шар радиуса <i>R</i> , заря- женный равномерно с объемной плотно- стью р	$E = \rho \frac{r}{3\varepsilon_0}, \text{ при } r \le R$ $E = \frac{q}{4\pi\varepsilon_0 r^2} = \frac{\rho R^3}{3\varepsilon_0 r^2},$ $r \ge R$	$ \begin{array}{c} E \\ 0 \\ R \end{array} $
Сфера радиуса <i>R</i> , за- ряженная равномерно с поверхностной плотностью σ	E = 0, при $r < RE = rac{q}{4\pi\varepsilon_0 r^2} = rac{\sigma R^2}{\varepsilon_0 r^2}, r \ge R$	$ \begin{array}{c} E \\ 0 \\ R \end{array} + r $
Бесконечно длинный цилиндр (нить), за- ряженный равномер- но с объемной плот- ностью ρ; τ – линей- ная плотность заряда.	$E = \frac{\rho r}{2\varepsilon_0}, \text{ при } r \le R$ $E = \frac{r}{2\pi\varepsilon_0 r} = \frac{\rho R^2}{2\varepsilon_0 r},$ $r \ge R$	e^{R} $\frac{1}{r}$ r

3.3. Потенциал и работа электростатического поля. Связь напряженности с потенциалом

3.3.1. Работа по перемещению заряда *q* из точки 1 в точку 2:

$$dA = Fdl\cos\alpha; \quad A = q \int_{1}^{2} \vec{E}d\vec{l}; \quad A_{12} = \frac{qq'}{4\pi\varepsilon_0} \left(\frac{1}{r_1} - \frac{1}{r_2}\right).$$

Работа электростатических сил не зависит от формы пути, а только лишь от координат начальной и конечной точек перемещения (рис. 3.7) Следовательно, силы поля *консервативны*, а само поле – *потенциально*.

3.3.2. Теорема циркуляции вектора напряженности \vec{E} : циркуляция вектора напряженности электростатического поля равна нулю (рис. 3.8)

$$\oint_{I} \vec{E} d\vec{1} = 0.$$

3.3.3. Связь между контурным и поверхностным интегралами согласно теореме Стокса:

$$\oint_L \vec{E} d\vec{l} = \int_S rot \vec{E} d\vec{S} = 0.$$

Отсюда видно, что rot $E = [\nabla E] = 0$ и, следовательно, электростатическое поле имеет безвихревой характер.

3.3.4. Работа по замкнутому пути (рис. 3.8):

$$A = q \oint_{L} \vec{E} d\vec{l} = 0.$$

Поле, обладающее такими свойствами, называется *потенциальным*. Любое электростатическое поле является потенциальным.

3.3.5. Потенциальная энергия – скалярная физическая величина, характеризующая способность некого тела (или материальной точки) совершать работу за счет его нахождения в поле действия сил. Она является характеристикой взаимодействия нескольких тел или тела и поля.

3.3.6. Потенциальная энергия взаимодействия электрических зарядов:

$$W = \frac{1}{4\pi\varepsilon\varepsilon_0} \frac{qq'}{r}.$$

3.3.7. Потенциал электростатического поля ϕ – физическая величина, численно равная потенциальной энергии единичного положительного точечного заряда, переносимого из бесконечности (точки нулевого потенциала) в данную точку поля:

$$\varphi = \frac{W}{q_0} = \frac{A_{\infty}}{q_0},$$

где A_{∞} – работа перемещения заряда q_0 из данной точки поля в бесконечность.

3.3.8. Потенциал точечного заряда:

$$\varphi = \frac{1}{4\pi\varepsilon\varepsilon_0} \frac{q}{r}.$$

3.3.9. Силовые линии электростатического поля – это линии, касательная к которым в любой точке поля совпадает с направлением вектора напряженности \vec{E} . С помощью силовых линий напряженности можно изобразить распределение электрического поля в пространстве. Для *неподвижных* или *неускоренных зарядов* силовые линии начинаются на положительных зарядах, а заканчиваются на отрицательных (или уходят на бесконечность). По густоте силовых линий можно судить о напряженности электрического поля (рис. 3.9).

3.3.10. Эквипотенциальная поверхность – воображаемая поверхность, все точки которой имеют одинаковый потенциал (рис. 3.10). $\varphi = \varphi(x, y, z) = \text{const.}$

Там где расстояния между эквипотенциальными поверхностями мало, напряженность поля велика и наоборот (рис. 3.11).

Puc.3.10

3.3.11. Потенциал системы зарядов (рис. 3.11) равен алгебраической сумме потенциалов, создаваемых каждым из зарядов в отдельности (принцип суперпозиции):

3.3.12. Связь между потенциалом электростатического поля и его напряженностью:

$$\vec{\mathbf{E}} = -\operatorname{grad}\boldsymbol{\varphi} \equiv -\nabla\boldsymbol{\varphi} \equiv \left(\vec{\mathbf{i}}\frac{\partial}{\partial x} + \vec{\mathbf{j}}\frac{\partial}{\partial y} + \vec{\mathbf{k}}\frac{\partial}{\partial z}\right)\boldsymbol{\varphi}$$

grad — вектор, показывающий направление наибыстрейшего увеличения функции.

3.3.12. Работа, совершаемая силами электрического поля при перемещении заряда из точки *1* в точку *2* (рис. 3.7) равна:

$$A_{12} = q_0(\varphi_1 - \varphi_2), \quad A_{12} = q_0 \int_1^2 E dl.$$

3.3.13. Разность потенциалов между двумя точками 1 и 2 в электрическом поле (рис. 3.11)

$$\varphi_1 - \varphi_2 = \frac{A_{12}}{q_0} = \int_1^2 E \mathrm{d}l.$$

3.3.14. Потенциал поля диполя:

$$\varphi = \frac{p}{4\pi\varepsilon_0 \varepsilon r^2} \cos\alpha \,.$$

3.3.15. Потенциальная энергия диполя:

$$W = -\vec{p}\vec{E} = pE\cos\alpha$$
.

3.3.16. Механический момент, действующий на диполь в электростатическом поле:

$$\vec{\mathbf{M}} = \left[\vec{\mathbf{p}}, \vec{\mathbf{E}} \right]$$
 или $M = pE\cos\alpha$.

3.3.17. Безвихревой характер электростатического поля:

$$\operatorname{rot}\vec{E} \equiv \left[\nabla, \vec{E}\right] = 0.$$

Работа по перемещению заряда по любому замкнутому пути в электростатическом поле равна нулю (рис. 3.11).

3.3.18. Зависимости потенциала электростатического поля от расстояния для разных моделей:

• Потенциал поля между заряженными плоскостями (рис. 3.12):

$$\varphi = \frac{\sigma d}{\varepsilon_0}.$$

• Потенциал нити (цилиндра):

$$\varphi = \begin{cases} \frac{\lambda}{2\pi\pi_0} \ln \frac{1}{R} = \text{const} - \beta Hympu \, u \, ha \, no \beta e p x Hocmu; \\ \frac{\lambda}{2\pi\pi_0} \ln \frac{r}{R} - \beta He \, u u \pi u H \partial p a. \end{cases}$$

• Потенциал поля цилиндрического конденсатора (рис. 3.13):

$$\varphi = \begin{cases} \frac{\lambda}{2\pi\pi_0} \ln \frac{R_2}{R_1} = \text{const-внутри меньшегоцилиндрa}(r < R_1); \\ \frac{\lambda}{2\pi\pi_0} \ln \frac{r}{R_1} - \text{меж ду цилиндрами}(R_1 < r < R_2); \\ 0 - \text{вне цилиндров.} \end{cases}$$

• Потенциал поля сферы (рис. 3.14): $\varphi = \begin{cases} \frac{q}{4\pi\varepsilon_0 R} = \frac{\sigma R}{\varepsilon_0} = \text{const} - \textit{внутрии на поверхн.сферы } (r \le R) \\ \frac{q}{4\pi\varepsilon_0 r} - \textit{внесферы } (r > R). \end{cases}$

• Потенциал поля шара (рис. 3.15):

$$\varphi = \begin{cases} \frac{5q}{8\pi\varepsilon_0 R} - e \, \text{uehmpe mapa} \, (r=0); \\ \frac{q}{8\pi\varepsilon_0 R} \left(3 - \frac{r^2}{R^2}\right) - e \, \text{hympu mapa} \, (r \le R); \\ \frac{q}{4\pi\varepsilon_0 r} - h a \, \text{nosepxhocmu u she mapa} \, (r \ge R). \end{cases}$$

3.4. Диэлектрики в электростатическом поле

3.4.1. Проводники и диэлектрики: по взаимодействию с электрическим полем вещества делятся на проводники, полупроводники и диэлектрики.

Проводники – вещества, содержащие свободные заряды, т.е. заряды, которые могут свободно перемещаться по всему объему вещества под действием электрического поля.

Полупроводники – вещества, в которых количество свободных зарядов зависит от внешних условий (температура, напряженность электрического поля и т.д.).

Диэлектрики – вещества, в которых нет или пренебрежимо мало свободных зарядов.

3.4.2. Диэлектрик (изолятор) – материал, плохо проводящий или совсем не проводящий электрический ток. Концентрация свободных носителей заряда в диэлектрике пренебрежимо мала. Основное свойство диэлектрика состоит в способности поляризоваться во внешнем электрическом поле.

3.4.3. Поляризация – смещение электрических зарядов вещества под действием электрического поля (рис. 3.16). Способность к поляризации является основным свойством диэлектриков.

3.4.4. Результирующее поле внутри диэлектрика (рис. 3.17): $E = E_0 - E',$

где E' – электростатическое поле связанных зарядов, E_0 – внешнее поле.

Результирующая напряженность электростатического поля в диэлектрике равна внешнему полю, деленному на диэлектрическую проницаемость среды є:

$$E = \frac{E_0}{\epsilon}.$$

3.4.4. Электрический момент одной молекулы (рис. 3.18):

$$\vec{\mathbf{p}}_1 = q\vec{\mathbf{l}}$$

3.4.5. Вектор поляризации – электрический момент единичного объема (рис. 3.19):

3.4.6. Поляризационный заряд на поверхности диэлектрика равенповерхностной плотности заряда:

$$\sigma_{\text{пол}} = \frac{\mathrm{d}q_{\text{пол}}}{\mathrm{d}S} = (Pn),$$

где *n* – нормаль к поверхности диэлектрика. Это равенство справедливо для поверхности диэлектрика любой формы.

Полный поляризационный заряд в объеме диэлектрика при неоднородной поляризации равен поверхностному поляризационному заряду с обратным знаком:

$$q_{\text{пол}} = -\oint_{S} P \mathrm{d}S = -\int_{V} \mathrm{div} P \mathrm{d}V$$

$$q_{\text{пол}} = \int \rho_{\text{пол}} \mathrm{d}V.$$

3.4.7. Соотношение между плотностью поляризационного заряда и вектором поляризации

$$\operatorname{div} \dot{\mathbf{P}} = -\rho_{\text{пол}}$$
.

3.4.8. Диэлектрическая восприимчивость χ характеризует поляризацию единичного объема среды:

$$\chi = n\alpha$$
,

где *n* – концентрация молекул в единице объема; α – поляризуемость молекулы.

3.4.9. Связь диэлектрической проницаемости с диэлектрической восприимчивостью:

$$\varepsilon = 1 + \chi$$

3.4.10. Связь диэлектрической восприимчивости с поляризуемостью молекулы:

$$\frac{\chi}{\chi+3} = \frac{1}{3}\alpha n$$

3.4.11. Вектор электрического смещения или электрическая индукция на границе раздела двух сред (рис.3.20):

$$\vec{D} = \varepsilon_0 \varepsilon \vec{E}$$

3.4.12. Связь вектора электрического смещения с напряженностью и поляризуемостью:

 $\vec{D} = \varepsilon_0 \vec{E} + \vec{P}$.

3.4.13. Теорема Гаусса для электростатического поля в диэлектрике: поток вектора электрического смещения через любую замкнутую поверхность определяется только свободными зарядами, а не всеми зарядами внутри объема, ограниченного данной поверхностью (рис. 3.21):

$$\Phi_D = \oint_S \vec{\mathbf{D}} \mathbf{d} \vec{\mathbf{S}} = \sum_{i=1}^n q_{i \text{ cbod}} \,.$$

В дифференциальной форме div $\vec{D} = \rho_{cBOO}$.

3.4.14. Закон преломления векторов \vec{E} и \vec{D} (рис 3.22):

$$\frac{\mathrm{tg}\alpha_1}{\mathrm{tg}\alpha_2} = \frac{E_{1n}}{E_{2n}} = \frac{D_{2\tau}}{D_{1\tau}} = \frac{\varepsilon_2}{\varepsilon_1}.$$

3.5. Проводники в электростатическом поле

3.5.1. Электростатическое экранирование – внутрь проводника поле не проникает:

$$\frac{\mathrm{d}\phi}{\mathrm{d}l} = -E = 0$$
, значит $\phi = \mathrm{const}$.

3.5.2. Электроемкость – характеристика проводящего тела, связанная с его способностью накапливать электрический заряд.

3.5.3. Электрическая емкость уединенного проводника – физическая величина, численно равная заряду, который необходимо сообщить проводнику для того, чтобы изменить его потенциал на единицу:

$$C = \frac{q}{\varphi_0}$$

где $\phi_0 = 1B$.

3.5.4 Электрическая емкость шара:

$$C = 4\pi\varepsilon_0\varepsilon R$$
.

3.5.5. Электрическая емкость конденсаторов (двух металличе-

ских пластин (обкладок), разделенных слоем диэлектрика) $C = \frac{q}{\Delta \phi}$:

• плоского (рис. 3.23):
$$C = \frac{\varepsilon_0 \varepsilon S}{d};$$

- сферического (рис. 3.24): $C = 4\pi\varepsilon_0\varepsilon\frac{r_1r_2}{r_2 r_1} \approx \frac{\varepsilon_0\varepsilon S}{d}$.
- цилиндрического (рис. 3.25): $C = \frac{2\pi\varepsilon_0 l}{\ln r_2/r_1} \approx \frac{\varepsilon_0 \varepsilon S}{d};$

Puc. 3.24

Puc. 3.25

3.5.6. Емкость параллельно соединенных конденсаторов:

$$C = \sum_{i=1}^n C_i \; .$$

3.5.7. Емкость последовательно соединенных конденсаторов:

$$\frac{1}{C} = \sum_{i=1}^n \frac{1}{C_i} \,.$$

Параллельное соединение	Последовательное соединение
-------------------------	-----------------------------

3.5.8. Энергия взаимодействия двух зарядов:

$$W = \frac{q_1 q_2}{4\pi\varepsilon_0 r_{12}} = \frac{1}{2} (q_1 \varphi_1 + q_2 \varphi_2).$$

3.5.9. Энергия заряженного уединенного проводника:

$$W = \frac{C\varphi^2}{2} = \frac{q\varphi}{2} = \frac{q^2}{2C}$$

3.5.10. Энергия заряженного конденсатора:

$$W = \frac{CU^2}{2} = \frac{qU}{2} = \frac{q^2}{2C}.$$

3.5.11. Энергия поля плоского конденсатора:

$$W = \frac{CU^2}{2} = \frac{\varepsilon \varepsilon_0 SU^2}{2d} = \frac{\varepsilon \varepsilon_0 E^2}{2} V = \frac{ED}{2} V = \frac{D^2}{2\varepsilon \varepsilon_0} V.$$

3.5.12. Объемная плотность энергии – величина, которая измеряется энергией поля, заключенной в единице объема:

$$w = \frac{W}{V} = \frac{\varepsilon_0 \varepsilon E^2}{2} = \frac{ED}{2}$$

3.5.13. Взаимная энергия системы *п* точечных зарядов:

$$W = \frac{1}{2} \sum_{k,i=1}^{n} \frac{q_k q_i}{4\pi\varepsilon_0 r_{ik}} \quad (i \neq k).$$

При непрерывном распределении зарядов с плотностью ρ по объему V и с плотностью σ на поверхности S в точках пространства с потенциалом φ:

$$W = \frac{1}{2} \int_{V} \varphi \rho dV + \frac{1}{2} \int_{S} \varphi \sigma dS \, .$$

• Величина энергии через индукцию и напряженность поля:

$$W = \frac{1}{2} \int_{V} (\vec{\mathbf{E}}, \vec{\mathbf{D}}) dV.$$

3.5.14. Пондермоторные силы в конденсаторе – силы электрического взаимодействия между пластинами конденсатора:

$$F = \frac{q^2}{2\varepsilon\varepsilon_0 S}.$$

3.6. Эмиссия электронов из проводников. Контактные явления на границах проводников

3.6.1. Работа выхода электрона из металла:

$$A_{\rm BMX} = e(\varphi_{\rm BH} - \varphi_{\rm IIB}).$$

3.6.2. Закон Чайльда – Ленгмюра (закон трех вторых): плотность тока *j* в условиях влияния объемного заряда пропорциональна $E^{3/2}$:

$$j = AE^{3/2}$$

где $A = \frac{4}{9} \varepsilon_0 \left(\frac{2e}{m}\right) E^{\frac{3}{2}} r^{-\frac{1}{2}}$ – коэффициент пропорциональности, определяе-

мый геометрией и материалом катода.

3.6.3. Термопара (термоэлектрический преобразователь температуры) –термоэлемент, применяемый в измерительных и преобразовательных устройствах, а также в системах автоматизации.

3.6.4. Термо ЭДС термопары: $E = \alpha (T_r - T_x),$

где *T*_г- температура горячего спая, *T*_x- температура холодного спая.

3.6.5. Эффект Пельтье – обратный термоэлектрический эффект. Он заключается в том, что при пропускании через термопару, её спай поглощает или выделяет тепло, в зависимости от направления тока:

$$Q_{\Pi} = \Pi_{12} j \,.$$

Сравнительные	Виды полей	
характеристики	Гравитационное	Электростатическое
Масса, заряд	m	q
Сила	$F = \gamma \frac{mM}{r^2}$	$F = k_0 \frac{qQ}{r^2}$
Напряженность поля	$G = \gamma \frac{M}{r^2}$	$E = k_0 \frac{Q}{r^2}$
Связь напря- женности с си- лой	$\vec{G} = \frac{\vec{F}}{m}$	$ec{ m E}=rac{ec{ m F}}{q}$
Принцип су- перпозиции	$\vec{\mathbf{G}} = \sum \vec{\mathbf{G}}_i$	$\vec{\mathbf{E}} = \sum \vec{\mathbf{E}}_i$
Потенциал по- ля	$\varphi = \gamma \frac{M}{r}$	$\varphi = k_0 \frac{Q}{r}$
Сложение по- тенциалов	$\varphi = \sum \varphi_i$	$\varphi = \sum \varphi_i$
Связь \vec{G} и ϕ	$\vec{G} = -\text{grad}\phi = -\nabla\phi$	$\vec{E} = -grad \phi = -\nabla \phi$
Работа по пе- ремещению тела или заряда	$A = m \left(\frac{\gamma M}{r_2} - \frac{\gamma M}{r_1} \right) = m (\varphi_2 - \varphi_1)$	$A = q \left(\frac{k_0 Q}{r_2} - \frac{k_0 Q}{r_1} \right) = q(\varphi_2 - \varphi_1)$
Работа по за- мкнутому кон- туру	$A = \oint_{L} \vec{F} d\vec{r} = 0$	$A = \oint_{L} \vec{F} d\vec{r} = 0$
Циркуляция вектора напря- женности	$\oint_L \vec{G} d\vec{1} = 0$	$\oint_L \vec{E} d\vec{1} = 0$
Потенциальная энергия	$U = \gamma \frac{mM}{r}$	$U = k_0 \frac{qQ}{r}$
Связь потенци- ала с энергией	$\varphi = \frac{U}{m}$	$\varphi = \frac{U}{q}$
Связь силы с энергией	$\vec{\mathrm{F}} = -\mathrm{grad}U$	$\vec{\mathrm{F}} = -\mathrm{grad}U$
Теор. Гаусса в интегр. форме	$\Phi_G = \oint_S \vec{G} d\vec{S} = 4\pi\gamma M$	$\overline{\Phi_E} = \oint_{S} \vec{E} d\vec{S} = 4\pi k_0 Q$
Теорема Гаусса в диф. форме	$\operatorname{div}\vec{G} = \nabla\vec{G} = 4\pi\gamma\rho$	$\operatorname{div}\vec{E} = \nabla\vec{E} = \frac{\rho}{\varepsilon\varepsilon_0} = 4\pi k_0 \rho$
Безвихревое	$rot\vec{G}=0$	$rot\vec{E}=0$

Сравнительные характеристики гравитационного и электростатического полей

	поле		
--	------	--	--

3.7 Постоянный электрический ток

3.7.1. Электрический ток – упорядоченное движение электрически заряженных частиц. За направление тока принимают направление движения положительных зарядов.

3.7.2. Связь напряженности и потенциала с плотностью распределения зарядов в пространстве:

$$\nabla E = \frac{1}{\varepsilon} \rho \qquad \mu \qquad \nabla^2 \phi = \frac{1}{\varepsilon} \rho \quad .$$

3.7.3. Сила тока – заряд, перенесенный сквозь рассматриваемую поверхность или через поперечное сечение проводника в единицу времени:

$$I = \frac{\partial q}{\partial t} = \oint_{S} \vec{j} \, \partial \vec{S} \, .$$

3.7.4. Сила постоянного тока: $I = \frac{q}{t}$.

3.7.5. Плотность тока j – векторная характеристика тока, модуль которой равен отношению силы тока ∂I через элементарную площадку ∂S , перпендикулярную направлению движения носителей заряда, к её пощади:

$$j = \frac{\partial I}{\partial S}$$
 или для постоянного тока $j = \frac{I}{S}$.

3.7.6. Направление вектора \vec{j} – направление вектора дрейфовой скорости \vec{v}_{dp} положительных носителей зарядов:

$$\vec{j} = \rho \vec{v}_{\rm dp} = q_+ n_+ \vec{v}_{\rm dp+} + q_- n_- \vec{v}_{\rm dp},$$

где q_+n_+ и q_-n_- – объемные плотности соответствующих зарядов.

Поле вектора \vec{j} изображается графически с помощью *линий тока*, которые проводят так же, как и линии вектора напряженности \vec{E} (рис. 3.26).

3.7.7. Плотности постоянного тока в различных поперечных сечениях 1 и 2 цепи обратно пропорциональны площадям S_1 и S_2 этих сечений (рис. 3.27):

$$j_2 / j_1 = S_1 / S_2$$
.

3.7.8. Уравнение непрерывности – закон сохранения электрического заряда (рис. 3.27):

• в интегральной форме: $\oint_{S} \vec{j} \partial \vec{S} = -\frac{\partial q}{\partial t};$

• в дифференциальной форме: $\nabla \vec{j} = -\frac{\partial \rho}{\partial t}$ или $\operatorname{div} \vec{j} = -\frac{\partial \rho}{\partial t}$;

• для постоянного тока:
$$\oint \vec{j} \partial \vec{S} = 0$$
.

3.7.9. Электродвижущая сила, действующая в цепи, численно равна работе сторонних сил A_{ct} над единичным положительным зарядом:

$$\mathbf{E} = \frac{A_{\rm cr}}{q}$$

• Для участка цепи 1–2 (рис. 3.28):

$$\mathbf{E} = \int_{1} E_{\rm cr} \mathrm{d}l; \quad \Delta \boldsymbol{\varphi} = \frac{A_{\rm k}}{q_0}.$$

• Для замкнутой цепи (рис. 3.29):

3.7.10. Сопротивление однородного проводника:

$$R = \frac{\rho l}{S}.$$

3.7.11. Зависимость сопротивления проводника *R* и удельного сопротивления *ρ* от температуры:

 $R = R_0 (1 + \alpha t), \quad \rho = \rho_0 (1 + \alpha t).$

Здесь *R* и R_0 , ρ и ρ_0 – соответственно сопротивление и удельное сопротивление проводника при *t* и 0 °C; α – температурный коэффициент сопротивления.

3.7.12. Общее сопротивление при последовательном и параллельном соединении:

Последовательное соединение		Параллельное соединение
$I_{AB} A R_1 R_2 B$		I_1 R_1 B I_2 R_2
Ι	$I_{AB} = \text{const} = I_1 = I_2$	$I_{AB} = I_1 + I_2$
R	$R_{AB} = R_1 + R_2$	$\frac{1}{R_{AB}} = \frac{1}{R_1} + \frac{1}{R_2}; R_{AB} = \frac{R_1 R_2}{R_1 + R_2}$
U	$U_{AB} = U_1 + U_2$	$U_{AB} = U_1 = U_2$

3.7.13. Сопротивление шунта, подключенного параллельно амперметру:

$$R = \frac{R_A}{n-1}$$

где R_A – сопротивление амперметра; n – число, показывающее во сколько раз изменяются пределы измерения амперметра.

3.7.14. Дополнительное сопротивление, подключенное последовательно с вольтметром:

$$R=R_V(n-1),$$

где R_V – сопротивление вольтметра; n – число, показывающее во сколько раз изменяются пределы измерения вольтметра.

3.7.15. Проводимость *G* – способность тела пропускать электрический ток под воздействием электрического поля:

$$G=\frac{1}{R}$$
.

3.7.16. Удельная электропроводность σ – физическая величина, равная электропроводности цилиндрического проводника единичной длины и единичной площади поперечного сечения:

$$\sigma = \frac{1}{\rho}$$
.

3.7.17. Закон Ома для однородного участка цепи (**E**=0): сила тока в проводнике прямо пропорциональна напряжению между концами проводника и обратно пропорциональна сопротивлению проводника

$$I = \frac{U}{R}$$

3.7.18. Закон Ома в дифференциальной форме:

$$\vec{j} = \frac{1}{\rho}\vec{E} = \sigma\vec{E}$$
.

3.7.19. Обобщенный закон Ома для участка цепи (рис. 3.30) содержащий источник ЭДС (закон сохранения энергии применительно к участку цепи постоянного тока):

3.7.20. Закон Ома для замкнутой цепи (рис. 3.31):

$$I = \frac{\mathbf{E}}{R+r},$$

где r – внутреннее сопротивление источника ЭДС; R – сопротивление нагрузки; **E** = I(R + r).

3.7.21. Сила тока в цепи:

• *при последовательном соединении п* источников с одинаковыми ЭДС и внутренними сопротивлениями:

$$I = \frac{n\mathbf{E}}{R+nr};$$

• *при параллельном соединении п* источников с одинаковыми ЭДС и внутренними сопротивлениями:

$$I = \frac{\mathbf{E}}{R + r/n}$$

3.7.22. Работа силы электрического поля:

$$A = RI^2 t \, .$$

3.7.22. Работа, совершаемая в цепи источником тока за время *t*:

$$A = I\mathbf{E}t = I^{2}(R+r)t = \frac{\mathbf{E}^{2}}{R+r}t$$

3.7.23. Мощность тока – это работа тока, совершаемая в единицу времени:

$$N = \frac{\mathrm{d}A}{\mathrm{d}t} = IU = I^2 R = \frac{U^2}{R}$$

3.7.24. Удельная мощность – мощность, выделяемая в единице объема проводника:

$$w = \rho j^2$$

3.7.25. Полная мощность, развиваемая источником тока в цепи:

$$N_0 = I\mathbf{E} = I^2 (R+r) = \frac{\mathbf{E}^2}{R+r}.$$

3.7.26. Закон Джоуля – Ленца: при протекании тока, в проводнике выделяется количество теплоты:

$$\mathrm{d}Q = IU\mathrm{d}t = I^2R\mathrm{d}t = \frac{U^2}{R}\mathrm{d}t \,.$$

3.7.27. Закон Джоуля – Ленца в дифференциальной форме характеризующий плотность выделенной энергии:

$$w = jE = \sigma E^2$$

3.7.28. КПД источника тока:

$$\eta = \frac{A_{\rm n}}{A_{\rm 3}} = \frac{N_{\rm n}}{N_{\rm 3}} = \frac{U}{E} = \frac{R}{R+r}$$

3.7.29. Первое правило Кирхгофа – алгебраическая сумма сил токов, сходящаяся в любом узле цепи, равна нулю:

$$\sum_{k=1}^n I_k = 0.$$

Токи притекающие к узлу считают положительными, а оттекающие от узла – отрицательными. Для схемы, изображенной на рис. 3.32 первое правило Кирхгофа запишется в виде:

$$I_1 - I_2 + I_3 = 0$$
.

3.7.30. Второе правило Кирхгофа – в любом замкнутом контуре электрической цепи алгебраическая сумма произведения тока на сопро-

тивление равна алгебраической сумме ЭДС, действующих в этом же контуре (рис. 3.33):

3.8. Электрический ток в газах металлах и электролитах

3.8.1. Несамостоятельным газовым разрядом называется такой разряд, который, возникнув при наличии электрического поля, может существовать только под действием внешнего ионизатора (рис. 3.34).

3.8.2. Зависимость плотности тока от напряженности поля изображена на рисунке 3.35.

3.8.3. Лавина – лавинообразное размножение (под действием увеличение напряжения) первичных ионов и электронов, созданных внешним ионизатором (рис 3.35, 3.36).

3.8.4. Плотность тока в газах : $\vec{j} = nq(\vec{v}^+ + \vec{v}^-).$

$\int -nq(0 + 0)$

3.8.5. Удельная электропроводность газов

$$\sigma = q_{\sqrt{\frac{\Delta n_i}{r}}} (\mu_+ + \mu_-).$$

3.8.5. Типы разрядов в зависимости от давления газа, конфигурации электродов и параметров внешней цепи:

- тлеющий разряд (рис.3.37);
- искровой разряд (рис 3.38);
- дуговой разряд (рис. 3.39);
- коронный разряд (рис. 3.40).

Puc. 3.38

Puc. 3.40

3.8.6. Закон Ома для тока в газах:

$$j = \sigma E$$
.

3.8.7. Закон Ома для тока в металлах:

$$I = enS\vec{v}_{\mu} = \frac{1}{2} \frac{e^2 \tau nS}{m} E = \frac{e^2 \tau nS}{2ml} U.$$

3.8.6. Электрическое сопротивление проводника:

$$R = \frac{2m}{e^2 n\tau} \frac{l}{S}$$

3.8.7. Зависимость сопротивления металла от температуры записывается линейным законом (рис. 3.41, кривая *1*):

$$R = R_0 (1 + \alpha t),$$

где *α* – температурный коэффициент сопротивления.

3.8.9. Сверхпроводимость – явление резкого уменьшения сопротивления (при температурах ниже критических $T_{\rm k}$) до нуля (рис. 3.41, кривая 2)

3.8.10. Сопротивление полупроводника с ростом температуры уменьшается за счет появления дополнительных носителей заряда. Зависимость сопротивления полупроводника от температуры показана на рис.3.42.

3.8.11. Электролиты – проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы (рис.3.43).

3.8.12. Первый закон Фарадея: масса *m* вещества, выделившегося на электроде, прямо пропорциональна заряду *q*, прошедшему через электролит:

$$m = kq = kIt,$$

где $k = \frac{\mu}{Fz}$ – электрический эквивалент вещества, z – заряд иона.

3.8.13. Второй закон Фарадея: электрохимические эквиваленты элементов прямо пропорциональны их химическим эквивалентам:

$$\frac{k_2}{k_1} = \frac{k_{x2}}{k_{x1}}$$

3.8.14. Объединенный закон Фарадея:

$$m = \frac{1}{F} \frac{\mu}{n} It$$