Электростатическое поле	Формулы и обозначения	Магнитное поле	Формулы и обозначения
Точечный заряд	q	Ток	I
Электрическая постоянная	ϵ_0	Магнитная постоянная	μ_0
Диэлектрическая проницаемость	3	Магнитная проницаемость	μ
Диэлектрическая восприимчивость	$\chi = \varepsilon - 1$	Магнитная восприимчивость	$\mathcal{H} = \mu - 1$
Взаимодействие точечных зарядов	$F = \frac{1}{4\pi\varepsilon_0\varepsilon} \frac{ q_1q_2 }{r^2}$	Взаимодействие токов	$F = \frac{\mu_0 \mu}{4\pi} \frac{2I_1 I_2}{r}$
Напряженность электрического поля	$\vec{\mathrm{E}} = \frac{\vec{\mathrm{F}}}{q}$	Магнитная индукция	$\vec{\mathbf{B}} = \frac{\vec{\mathbf{M}}_{\text{max}}}{\vec{\mathbf{P}}_{m}}$
Электрическая индукция	$\vec{D} = \varepsilon_0 \varepsilon \vec{E}$	Напряженность магнитного поля	$\vec{H} = \frac{\vec{B}}{\mu_0 \mu}$
Поляризованность	$\vec{P} = \chi \epsilon_0 \vec{E}$	Намагниченность	$\vec{J} = \mathcal{H}$
Электроемкость проводника	$C = \frac{q}{\varphi} = \frac{\varepsilon_0 \varepsilon S}{d}$	Индуктивность катушки	$L = \frac{\Phi}{I} = \mu_0 \mu S l$
Энергия конденсатора	$W = \frac{CU^2}{2} = \frac{q^2}{2C}$	Энергия катушки с током	$W = \frac{LI^2}{2} = \frac{\Phi^2}{2L}$
Объемная плотность энергии	$w = \frac{ED}{2} = \frac{\varepsilon_0 E^2}{2}$	Объемная плотность энергии	$w = \frac{BH}{2} = \frac{\mu_0 H^2}{2}$

Циркуляция Ē	$\oint_L \vec{\mathbf{E}} dl = 0$	Циркуляция В	$\oint\limits_L H = I_{ ext{полн}}$
Теорема Гаусса	$\Phi_E = \oint_S \vec{E} d\vec{S} = \frac{q}{\varepsilon_0}$	Теорема Гаусса	$\Phi_B = \oint_S \vec{B} d\vec{S} = 0$
Безвихревое поле	$rot\vec{E} = 0$	Созданное токами	$\mathrm{rot}\vec{\mathrm{H}}=\vec{\mathrm{j}}_{\mathrm{полн}}$
Созданное зарядами	$\operatorname{div} \vec{\mathbf{D}} = \nabla \vec{\mathbf{D}} = \mathbf{p}$	Вихревое поле	$\operatorname{div} \vec{\mathbf{B}} = \nabla \vec{\mathbf{B}} = 0$
Принцип суперпозиции	$\vec{\mathrm{E}} = \sum \vec{\mathrm{E}}_{\mathrm{i}}$	Принцип суперпозиции	$\vec{\mathrm{B}} = \sum \vec{\mathrm{B}}_{\mathrm{i}}$

Электрическое поле	Формулы и обозначения	Магнитное поле	Формулы и обозначения
Точечный заряд	q	Ток	I
Электрическая постоянная	ϵ_0	Магнитная постоянная	μ_0
Диэлектрическая проницаемость	3	Магнитная проницаемость	μ
Диэлектрическая восприимчивость	$\chi = \varepsilon - 1$	Магнитная восприимчивость	$i = \mu - 1$
Взаимодействие точечных зарядов	$F = \frac{1}{4\pi\varepsilon_0\varepsilon} \frac{ q_1q_2 }{r^2}$	Взаимодействие токов	$F = \frac{\mu_0 \mu}{4\pi} \frac{2I_1 I_2}{r}$
Силовая характеристика электрич. поля	$\vec{\mathrm{E}} = \frac{\vec{\mathrm{F}}}{q}$	Силовая характеристика магнитного поля	$\vec{\mathbf{B}} = \frac{\vec{\mathbf{M}}_{\text{max}}}{\vec{\mathbf{P}}_{m}}$
Принцип суперпозиции	$\vec{\mathrm{E}} = \sum_k \vec{\mathrm{E}}_k$	Принцип суперпозиции	$\vec{\mathbf{B}} = \sum_k \vec{\mathbf{B}}_k$

Электрическое поле	Формулы и обозначения	Магнитное поле	Формулы и обозначения
Поляризованностъ	$\vec{P} = \chi \epsilon_0 \vec{E}$	Намагниченность	$\vec{\mathbf{J}} = \frac{\mathcal{H}}{\mu_0} \vec{\mathbf{B}}$
Электроемкость проводника	$C = \frac{q}{\varphi}$	Индуктивность катушки	$L = \frac{\Phi}{I}$
Энергия заряженного конденсатора	$W = \frac{CU^2}{2} = \frac{q^2}{2C}$	Энергия катушки с током	$W = \frac{LI^2}{2}.$
Объемная плотность энергии	$w = \frac{ED}{2} = \frac{\varepsilon_0 E^2}{2}$	Объемная плотность энергии	$w = \frac{BH}{2} = \frac{\mu_0 H^2}{2}$
Поток вектора $\vec{\mathbf{E}}$ сквозь поверхн. \mathbf{S}	$\Phi_E = \oint_S \vec{E} d\vec{S} = \frac{q}{\varepsilon_0}$	Поток вектора B сквозь поверхность S	$\Phi_B = \oint_S \vec{\mathbf{B}} d\vec{\mathbf{S}} = 0$
Циркуляция вектора Ё	$\oint_L \vec{\mathbf{E}} dl = 0$	Циркуляция Вектора В	$\oint_{L} \vec{\mathbf{B}} dl = \mu_0 I$

ное уравнение

Индуктивность

катушки

Обратная

величина емкости

Заряд

Сила тока

Энергия электрич.

ПОЛЯ

Энергия

магнитного поля

 $q = q_m \sin(\omega t + \varphi)$

I = dq / dt

 $\ddot{x} + 2\beta \dot{x} + \omega_0^2 x = 0$

m

k

 $x = x_m \sin(\omega t + \varphi)$

v = dx/dt

ное уравнение

Macca

Коэффициент

жесткости

Смещение

Скорость

Потенциальная

энергия

Кинетическая

энергия

Собств. частота пружинного маятника	$\omega_0 = \sqrt{\frac{k}{m}}$	Собств. частота колебательного контура	$\omega_0 = \frac{1}{\sqrt{LC}}$
Период колебаний	$T = 2\pi \sqrt{m/k}$	Период колеб. Формула Томсона	$T = 2\pi\sqrt{LC}$
Циклич. частота затухающих колебаний	$\omega = \sqrt{\frac{k}{m} - \left(\frac{r}{2m}\right)^2}$	Циклич. частота затухающих колебаний	$\omega = \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}$
Коэффициент затухания	$\beta = \frac{r}{2m}$	Коэффициент затухания	$\beta = \frac{R}{2L}$
Логарифмич. декремент затухания	$\chi = \ln \frac{A(t)}{A(t+T)} = \beta T$	Логарифмич. декремент затухания	$\chi = \beta T = \pi R \sqrt{\frac{C}{L}}$
Добротность пружинного маятника	$Q = \frac{\pi}{\chi} = \frac{1}{r} \sqrt{km}$	Добротность колебательного контура	$Q = \frac{\pi}{\chi} = \frac{1}{R} \sqrt{\frac{L}{C}}$
Резонансная частота	$\omega_{\text{pe3}} = \sqrt{\omega_0^2 - 2\beta^2}$	Резонансная частота	$\omega_{\text{pe3}} = \sqrt{\omega_0^2 - 2\beta^2}$