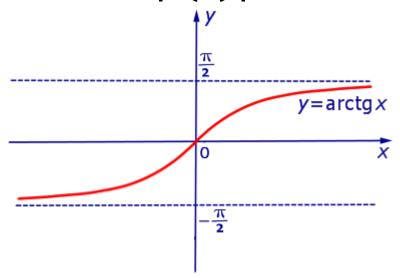
ПРЕДЕЛ ФУНКЦИИ

Доцент Гончарова И.В.

Ограниченные функции.

Определение. Функция y=f(x) называется **ограниченной**, если область ее значений является ограниченным множеством. Иными словами, функция y=f(x), x∈X ограничена, если существует число r>0 такое, что |f(x)|<r для всех x∈X.

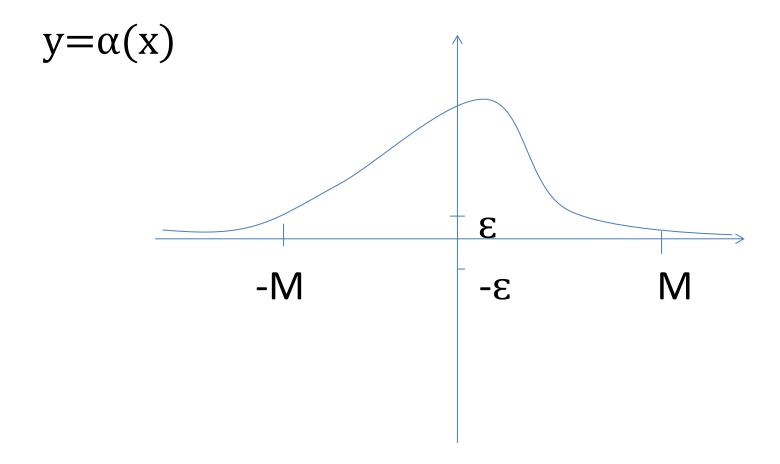


Предел функции на бесконечности.

Определение. Функцию α(x), определенную на объединении двух лучей

 $(-\infty,a_1]$ ∪ $[a_2,+\infty]$ называют, **бесконечно малой** при х→∞, если для любого $\epsilon>0$ существует число М >0 такое, что для всех х таких, что |x|>M, выполняется неравенство $|\alpha(x)|<\epsilon$.

Обозначение: $\lim_{x\to\infty} \alpha(x) = 0$



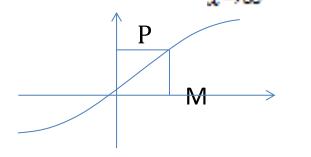
Основные теоремы.

- 1. Постоянная функция у=с является бесконечно малой при х $\to \infty$ тогда и только тогда, когда с=0.
- 2. Если $\beta(x)$ бесконечно малая функция при $x \to +\infty$ и для всех x из некоторого луча $[Q, +\infty)$ выполняется неравенство $|\alpha(x)| \le |\beta(x)|$, то $\alpha(x)$ бесконечно малая при $x \to +\infty$. (Аналогично, при $x \to -\infty$).
- 3. Если $\alpha(x)$ бесконечно малая при $x \to \infty$, то она является ограниченной на некотором луче $[|M|, \infty)$.
- 4. Сумма двух бесконечно малых при х→∞ функций является бесконечно малой при х→∞ функцией.
- 5. Если $\alpha(x)$ бесконечно малая при $x \to \infty$, а y=f(x)- ограниченная функция на объединении лучей (- ∞ , a_1] \cup [a_2 , $+\infty$], то их произведение является бесконечно малой при $x \to \infty$ функцией.

Определение. Функцию f(x), определенную на объединении двух лучей

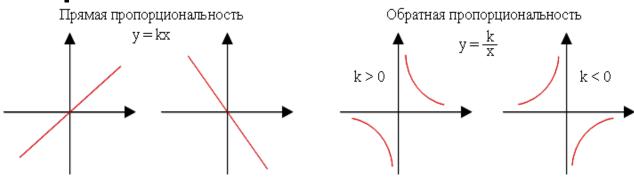
 $(-\infty,a_1)$ ∪ $(a_2,+\infty]$ называют, **бесконечно большой** при х $\to\infty$, если для любого Р>0 существует число М>0 такое, что для всех х таких, что |x|>M, выполняется неравенство |f(x)|>P.

Обозначение: $\lim_{x \to \infty} f(x) = \infty$



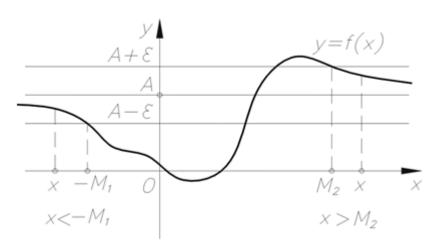
Теорема. Для того, чтобы функция f(x), была бесконечно большой при x→∞, необходимо и достаточно, чтобы функция 1/ f(x) была бесконечно малой при x→∞.

Пример. у=к/х – бесконечно малая функция, у=кх - бесконечно большая при х→∞.



Определение. Число A называется пределом функции f(x) на бесконечности или при $x\to\infty$, если для любого $\varepsilon>0$ существует число M>0 такое, что для всех х таких, что |x|>M, выполняется неравенство $|f(x)-A|<\varepsilon$.

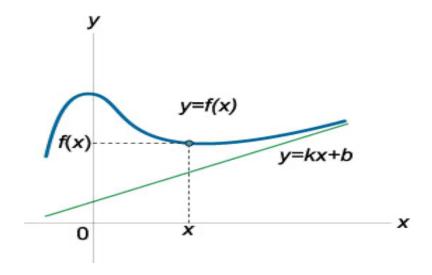
Обозначение: $\lim_{x\to\infty} f(x) = A$



Асимптоты.

Определение. Прямая y=kx+b называется асимптотой графика функции y=f(x) при $x \to \infty$, если $\lim_{x \to \infty} (f(x) - (\kappa x + b)) = 0$

Другими словами, если отклонение графика функции f(x) от прямой y=kx+b неограниченно уменьшается при x→∞



Алгоритм отыскания асимптоты графика функции.

- 1. Вычислить предел $\lim_{x \to \infty} f(x)$. Если этот предел существует и равен b, то y=b горизонтальная асимптота; если $\lim_{x \to \infty} f(x) = \infty$, то перейти к пункту 2. 2. Вычислить предел $\lim_{x \to \infty} \frac{f(x)}{x}$ Если этот предел не
- 2. Вычислить предел $\lim_{x\to\infty} \frac{f(x)}{x}$. Если этот предел не существует, то асимптоты нет; если он существует и равен $\lim_{x\to\infty} \frac{f(x)}{x} = k$, то перейти к пункту 3.
- 3. Вычислить предел $\lim_{x\to\infty} (f(x) kx)$. Если этот предел не существует, то асимптоты нет; если он существует и равен bто перейти к пункту 4.
- 4. Записать уравнение наклонной асимптоты y=kx+b.

Найти асимптоту графика функции $y = \frac{x^3 - 6x^2 + 3}{2x^2 + 5}$

$$1. \lim_{x \to \infty} \frac{x^3 - 6x^2 + 3}{2x^2 + 5} = \infty$$

2.
$$\lim_{x\to\infty} \frac{x^3 - 6x^2 + 3}{x(2x^2 + 5)} = 1/2$$
, 3HaYUT ½.

3.
$$\lim_{x \to \infty} \left(\frac{x^3 - 6x^2 + 3}{2x^2 + 5} - \frac{1}{2}x \right) = -3$$
, t.e. b=-3

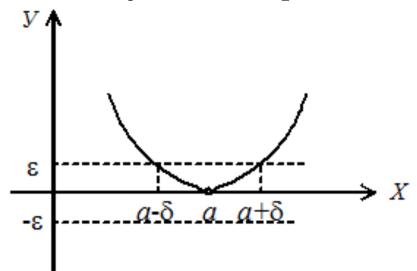
4. Уравнение асимптоты у=1/2х -3.

Предел функции в точке.

Определение. Функцию $\alpha(x)$, **бесконечно малой** при $x\rightarrow a$, если для любого $\epsilon>0$ существует $\delta>0$ такое, что для всех х таких, что $0<|x-a|<\delta$, выполняется неравенство $|\alpha(x)|<\epsilon$.

Обозначение: $\lim_{x \to a} \alpha(x) = 0$

Геометрически неравенство $0<|x-a|<\delta$ описывает проколотую δ – окрестность точки а.



Основные теоремы.

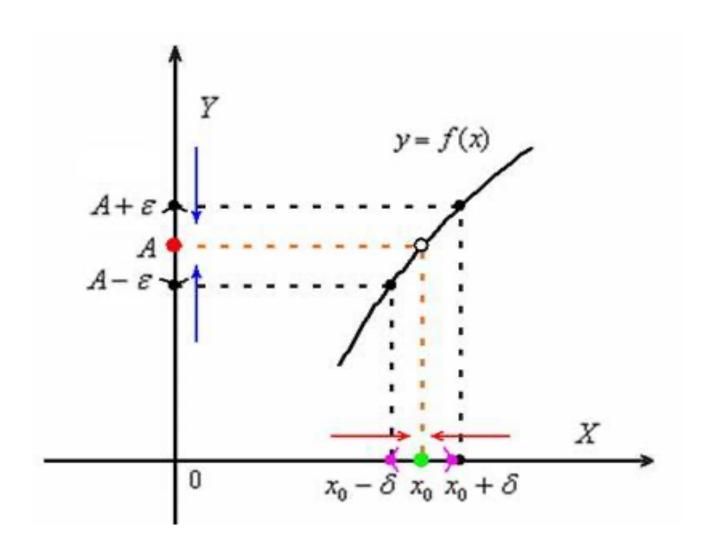
- 1. Постоянная функция у=с является бесконечно малой при х→а тогда и только тогда, когда с=0.
- 2. Если $\beta(x)$ бесконечно малая функция при х \to а и для всех х в проколотой окрестности точки а выполняется неравенство $|\alpha(x)| \le |\beta(x)|$, то $\alpha(x)$ бесконечно малая при х \to а.
- 3. Если $\alpha(x)$ бесконечно малая при $x \rightarrow a$, то она является ограниченной в проколотой окрестности точки a.
- 4. Сумма двух бесконечно малых при х→а функций является бесконечно малой при х→а функцией.
- 5. Если $\alpha(x)$ бесконечно малая при $x \rightarrow a$, а y=f(x)- ограниченная функция, в окрестности точки а, то их произведение является бесконечно малой при $x \rightarrow a$ функцией.

Определение.

Предел функции в точке

• Определение Коши (в терминах $\varepsilon - \delta$) Число A называется пределом функции y = f(x) в точке x_0 (при $x \to x_0$), если для любого $\varepsilon > 0$ найдётся число $\delta > 0$, что для всех $x \neq x_0$, удовлетворяющих неравенству $|x - x_0| < \delta$, выполняется неравенство $|f(x) - A| < \varepsilon$

$$|f(x) - A| < \varepsilon) \Leftrightarrow \lim_{x \to x_0} f(x) = A$$



Основные теоремы о пределе функции в точке.

- 1. Если функция имеет предел при х→х₀, то только один.
- 2. Если функция имеет предел при $x \to x_0$, то она ограничена в некоторой проколотой окрестности точки x_0 .
- 3. (о предельном переходе в неравенствах) Если $\lim_{x\to a} f(x) = b, \lim_{x\to a} g(x) = c,$
- и в некоторой проколотой окрестности точки а выполняется неравенство f(x)≤g(x), то b≤c

Теоремы об арифметических операциях.

$$\lim_{x \to a} c = c, c - const,$$

$$\lim_{x \to a} (f_1(x) \pm f_2(x)) = \lim_{x \to a} f_1(x) \pm \lim_{x \to a} f_2(x),$$

$$\lim_{x \to a} (f_1(x) \cdot f_2(x)) = \lim_{x \to a} f_1(x) \cdot \lim_{x \to a} f_2(x),$$

$$\lim_{x \to a} \frac{f_1(x)}{f_2(x)} = \frac{\lim_{x \to a} f_1(x)}{\lim_{x \to a} f_2(x)}, \lim_{x \to a} f_2(x) \neq 0.$$

$$\lim_{x\to 1}(x^3-2x^2+5x+3)=1^3-2\cdot 1^2+5\cdot 1+3=7$$

Односторонние пределы

Пусть функция f(x) определена только слева (или только справа) от a, т.е. в интервале x < a (x > a).

Определение 1.

Число **a** называется *левосторонним пределом* функции f(x) при $x \to a$ (x < a), если

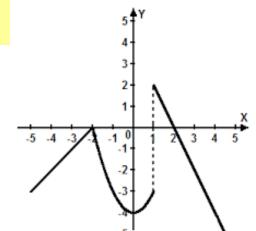
$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : a - \delta < x < a \Rightarrow |f(x) - A| < \varepsilon$$

$$\lim_{x \to a^{-}} f(x) = A \qquad \lim_{x \to a^{-}0} f(x) = A$$

Определение 2.

Число **a** называется *правосторонним пределом* функции f(x) при $x \to a_+$ (x > a), если

$$\lim_{x \to a+} f(x) = A \qquad \lim_{x \to a+0} f(x) = A$$



Теорема о существовании предела

Функция y = f(x) имеет $\lim_{x \to a} f(x) = A$ в том и только том случае, когда существуют и равны друг другу ее левосторонний и правосторонний пределы при $x \to a$.

Тогда
$$\lim_{x \to a-0} f(x) = \lim_{x \to a+0} f(x) = \lim_{x \to a} f(x) = \lim_{x \to a} f(x) = A.$$

Непрерывность

Функция f(x), определенная на множестве X, называется непрерывной в точке x_0 , если $x_0 \in X$

- 1)она определена в этой точке,
- 2) существует $\lim_{x\to x_0} f(x)$ и

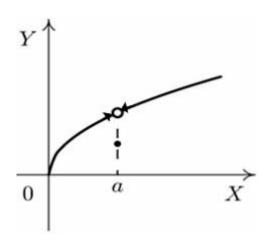
3)
$$\lim_{x \to x_0} f(x) = f(x_0)$$

$$\lim_{x \to 2} \frac{\sin \pi x}{\sqrt{x} + 4} = \frac{\sin 2\pi}{\sqrt{2} + 4} = \frac{0}{\sqrt{2} + 4} = 0$$

Точки разрыва. Классификация.

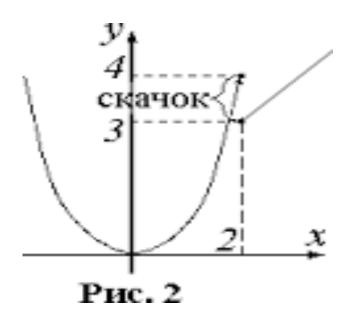
1. Точка устранимого разрыва.

Односторонние пределы функции f(x) существуют при х→а, равны между собой, но не равны значению функции в этой точке.



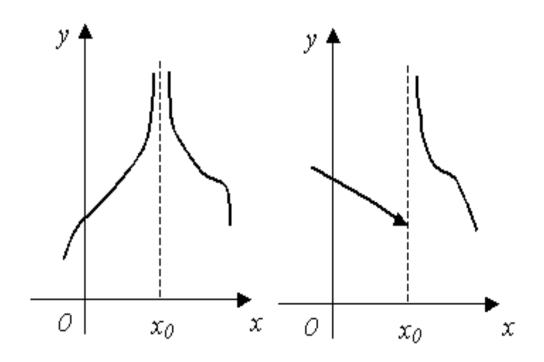
2. Скачок.

Односторонние пределы существуют, но не равны.



3. Разрыв второго рода.

Хотя бы один из односторонних пределов не существует.



Техника вычисления пределов. Раскрытие неопределенностей.

1. Неопределенность 0/0.

$$\lim_{x \to 4} \frac{\sqrt{21 + x} - 5}{x^3 - 64} = \left[\frac{0}{0} \right] = \lim_{x \to 4} \frac{\left(\sqrt{21 + x} - 5\right)\left(\sqrt{21 + x} + 5\right)}{\left(x^3 - 64\right)\left(\sqrt{21 + x} + 5\right)} =$$

$$= \lim_{x \to 4} \frac{21 + x - 25}{\left(x^3 - 64\right)\left(\sqrt{21 + x} + 5\right)} = \lim_{x \to 4} \frac{x - 4}{\left(x - 4\right)\left(x^2 + 4x + 16\right)\left(\sqrt{21 + x} + 5\right)} =$$

$$= \lim_{x \to 4} \frac{1}{\left(x^2 + 4x + 16\right)\left(\sqrt{21 + x} + 5\right)} = \frac{1}{480}.$$

. Неопределенность 1^{∞}

$$\lim_{x \to \infty} \left(\frac{2x}{2x - 3} \right)^{2 - 5x} = \left[1^{\infty} \right] = \lim_{x \to \infty} \left(1 + \frac{2x}{2x - 3} - 1 \right)^{2 - 5x} = \lim_{x \to \infty} \left(1 + \frac{2x - 2x + 3}{2x - 3} \right)^{2 - 5x} = \lim_{x \to \infty} \left(1 + \frac{3}{2x - 3} \right)^{2 - 5x} = \lim_{x \to \infty} \left(1 + \frac{1}{\frac{2x - 3}{3}} \right)^{\frac{3(2 - 5x)}{2x - 3}} = e^{-\frac{15}{2}}$$

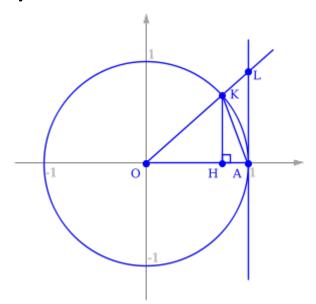
3. Неопределенность ∞/∞

$$\lim_{x \to \infty} \frac{5x^3 - 4x^2 + x - 1}{7x^2 + 8x + 11} = \left(\frac{\infty}{\infty}\right) = \lim_{x \to \infty} \frac{\left(5x^3 - 4x^2 + x - 1\right)/x^3}{\left(7x^2 + 8x + 11\right)/x^3} = \lim_{x \to \infty} \frac{\frac{5x^3}{x^3} - \frac{4x^2}{x^3} + \frac{x}{x^3} - \frac{1}{x^3}}{\frac{7x^2}{x^3} + \frac{8x}{x^3} + \frac{11}{x^3}} = \frac{\frac{5}{1} - \lim_{x \to \infty} \frac{4}{x} + \lim_{x \to \infty} \frac{1}{x^2} - \lim_{x \to \infty} \frac{1}{x^3}}{\frac{7}{x^3} + \lim_{x \to \infty} \frac{1}{x^3}} = \frac{5}{0} = \infty.$$

Первый замечательный предел

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Доказательство.



$$\lim_{x \to 0+} \frac{\sin x}{x}$$

$$\lim_{x \to 0-} \frac{\sin x}{x}$$

$$S_{\triangle OKA} < S_{sectOKA} < S_{\triangle OAL}$$

$$S_{\triangle OKA} = \frac{1}{2} \cdot |OA| \cdot |KH| = \frac{1}{2} \cdot 1 \cdot \sin x = \frac{\sin x}{2}$$

$$S_{sectOKA} = \frac{1}{2}R^2x = \frac{x}{2}$$

$$S_{\triangle OAL} = \frac{1}{2} \cdot |OA| \cdot |LA| = \frac{\operatorname{tg} x}{2}$$

$$x \to 0+ : \sin x > 0, x > 0, \operatorname{tg} x > 0$$

$$\cos x < \frac{\sin x}{x} < 1$$

$$\frac{1}{\operatorname{tg} x} < \frac{1}{x} < \frac{1}{\sin x}$$

$$\lim_{x\to 0+}\cos x < \lim_{x\to 0+}\frac{\sin x}{x} < 1 \qquad \qquad 1 < \lim_{x\to 0+}\frac{\sin x}{x} < 1$$

$$\lim_{x \to 0+} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0-} \frac{\sin x}{x} = \begin{bmatrix} u = -x \\ x = -u \\ u \to 0+ \\ x \to 0- \end{bmatrix} = \lim_{u \to 0+} \frac{\sin(-u)}{-u} = \lim_{u \to 0+} \frac{-\sin(u)}{-u} = \lim_{u \to 0+} \frac{\sin(u)}{-u} = 1$$

Правый и левый односторонний пределы существуют и равны 1, а значит и сам предел равен 1

Следствия из первого замечательного предела.

$$\lim_{x \to 0} \frac{\arcsin x}{x} = 1$$

$$\lim_{x \to 0} \frac{1 - \cos x}{\frac{x^2}{2}} = 1$$

$$\lim_{x \to 0} \frac{\tan x}{x} = 1$$

$$\lim_{x \to 0} \frac{\arctan x}{x} = 1$$

Второй замечательный предел.

$$\lim_{x \to \infty} (1 + \frac{1}{x})^x = e$$

Следствия из второго замечательного предела.

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1 \qquad \qquad \lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

Пример Найти $\lim_{x\to 0} \frac{\operatorname{tg} x}{x}$.

Решение. Имеем

$$\lim_{x \to 0} \frac{\lg x}{x} = \lim_{x \to 0} \frac{\sin x}{x} \frac{1}{\cos x} = \lim_{x \to 0} \frac{\sin x}{x} \lim_{x \to 0} \frac{1}{\cos x} = 1 \cdot \frac{1}{1} = 1.$$

Пример Найти $\lim_{x\to 0} \frac{5x}{\sin 4x}$.

Решение. Имеем

$$\lim_{x \to 0} \frac{5x}{\sin 4x} = \lim_{x \to 0} \frac{5/4}{\frac{\sin 4x}{4x}} = \frac{5/4}{\frac{\sin 4x}{4x}} = \frac{5/4}{1} = 1,25.$$

$$\lim_{x \to \infty} \left(\frac{x+3}{x} \right)^{4x+1} = \left[1^{\infty} \right] = \lim_{x \to \infty} \left(1 + \frac{3}{x} \right)^{4x+1} = \lim_{x \to \infty} \left(1 + \frac{3}{x} \right)^{4x} \cdot \left(1 + \frac{3}{x} \right) = \lim_{x \to \infty} \left(1 + \frac{3}{x} \right)^{4x} \cdot \lim_{x \to \infty} \left(1 + \frac{3}{x} \right) = \lim_{x \to \infty} \left(1 + \frac{3}{x} \right)^{\frac{x}{3} - 3 \cdot 4} \cdot 1 = \left(\lim_{x \to \infty} \left(1 + \frac{3}{x} \right)^{\frac{x}{3}} \right)^{12} = e^{12}.$$

$$\lim_{x \to 0} (1+2x)^{1/x} = \lim_{x \to 0} (1+2x)^{2/(2x)} =$$

$$= \lim_{x \to 0} \left[(1+2x)^{1/(2x)} \right]^2 =$$

$$\left[\lim_{2x \to 0} (1+2x)^{1/(2x)} \right]^2 = e^2.$$